Marek Bienias

Independent Bernstein sets and algebraic constructions

Joint with Artur Bartoszewicz and Szymon Głąb (Technical University of Lodz)

Introduction

Algebrability of certain classes of functions Independent Bernstein sets and general construction Main results and questions Bibliography

Introduction

Background

Recently it has become a trend in Mathematical Analysis to look for large algebraic structures (infinite dimensional vector spaces, closed infinite dimensional vector spaces, algebras) of functions on \mathbb{R} or \mathbb{C} that have certain properties.

Introduction

Algebrability of certain classes of functions Independent Bernstein sets and general construction Main results and questions Bibliography

Introduction

Background

Recently it has become a trend in Mathematical Analysis to look for large algebraic structures (infinite dimensional vector spaces, closed infinite dimensional vector spaces, algebras) of functions on \mathbb{R} or \mathbb{C} that have certain properties.

伺 ト イ ヨ ト イ ヨ ト

The notion of algebrability has its origin in works of Aron, Pérez-García and Seoane-Sepulveda and the following is a slightly simplified version of their definition.

Definition (Aron, Pérez-García and Seoane-Sepulveda)

Let \mathcal{L} be an algebra. A set $A \subseteq \mathcal{L}$ is said to be β -algebrable if there exists an algebra \mathcal{B} so that $\mathcal{B} \subseteq A \cup \{0\}$ and $card(Z) = \beta$, where β is cardinal number and Z is a minimal system of generators of \mathcal{B} . Here, by $Z = \{z_{\alpha} : \alpha \in \Lambda\}$ is a minimal system of generators of \mathcal{B} , we mean that $\mathcal{B} = \mathcal{A}(Z)$ is the algebra generated by Z, and for every $\alpha_0 \in \Lambda, z_{\alpha_0} \notin \mathcal{A}(Z \setminus \{z_{\alpha_0}\})$. We also say that Ais algebrable if A is β -algebrable for β -infinite.

The notion of algebrability has its origin in works of Aron, Pérez-García and Seoane-Sepulveda and the following is a slightly simplified version of their definition.

Definition (Aron, Pérez-García and Seoane-Sepulveda)

Let \mathcal{L} be an algebra. A set $A \subseteq \mathcal{L}$ is said to be β -algebrable if there exists an algebra \mathcal{B} so that $\mathcal{B} \subseteq A \cup \{0\}$ and $card(Z) = \beta$, where β is cardinal number and Z is a minimal system of generators of \mathcal{B} . Here, by $Z = \{z_{\alpha} : \alpha \in \Lambda\}$ is a minimal system of generators of \mathcal{B} , we mean that $\mathcal{B} = \mathcal{A}(Z)$ is the algebra generated by Z, and for every $\alpha_0 \in \Lambda, z_{\alpha_0} \notin \mathcal{A}(Z \setminus \{z_{\alpha_0}\})$. We also say that Ais algebrable if A is β -algebrable for β -infinite.

The notion of algebrability has its origin in works of Aron, Pérez-García and Seoane-Sepulveda and the following is a slightly simplified version of their definition.

Definition (Aron, Pérez-García and Seoane-Sepulveda)

Let \mathcal{L} be an algebra. A set $A \subseteq \mathcal{L}$ is said to be β -algebrable if there exists an algebra \mathcal{B} so that $\mathcal{B} \subseteq A \cup \{0\}$ and $card(Z) = \beta$, where β is cardinal number and Z is a minimal system of generators of \mathcal{B} . Here, by $Z = \{z_{\alpha} : \alpha \in \Lambda\}$ is a minimal system of generators of \mathcal{B} , we mean that $\mathcal{B} = \mathcal{A}(Z)$ is the algebra generated by Z, and for every $\alpha_0 \in \Lambda$, $z_{\alpha_0} \notin \mathcal{A}(Z \setminus \{z_{\alpha_0}\})$. We also say that Ais algebrable if A is β -algebrable for β -infinite.

We study the following classes of functions:

- Perfectly everywhere surjective (*PES*), strongly everywhere surjective (*SES*) and everywhere discontinuous Darboux (*EDD*) functions;
- Everywhere discontinuous functions that have finitely many values (*EDF*) and everywhere discontinuous compact to compact functions (*EDC*);
- Functions that are continuous in fixed closed set C.

・ 戸 ト ・ ヨ ト ・ ヨ

We study the following classes of functions:

- Perfectly everywhere surjective (*PES*), strongly everywhere surjective (*SES*) and everywhere discontinuous Darboux (*EDD*) functions;
- Everywhere discontinuous functions that have finitely many values (*EDF*) and everywhere discontinuous compact to compact functions (*EDC*);
- Functions that are continuous in fixed closed set C.

・ 同 ト ・ ヨ ト ・ ヨ ト

We study the following classes of functions:

- Perfectly everywhere surjective (*PES*), strongly everywhere surjective (*SES*) and everywhere discontinuous Darboux (*EDD*) functions;
- Everywhere discontinuous functions that have finitely many values (*EDF*) and everywhere discontinuous compact to compact functions (*EDC*);
- Functions that are continuous in fixed closed set *C*.

・ 同 ト ・ ヨ ト ・ ヨ ト

We study the following classes of functions:

- Perfectly everywhere surjective (*PES*), strongly everywhere surjective (*SES*) and everywhere discontinuous Darboux (*EDD*) functions;
- Everywhere discontinuous functions that have finitely many values (*EDF*) and everywhere discontinuous compact to compact functions (*EDC*);
- Functions that are continuous in fixed closed set C.

くほし くほし くほし

Independent family of sets

Let $\mathcal B$ be a family of subsets of a set X. We say that the family $\mathcal A$ is $\mathcal B$ -independent iff

$A_1^{\varepsilon_1} \cap \ldots \cap A_n^{\varepsilon_n} \in \mathcal{B}$

for any distinct $A_i \in A$, any $\varepsilon_i \in \{0, 1\}$ for $i \in \{1, ..., n\}$ and $n \in \mathbb{N}$ where $A^0 = X \setminus A$ and $A^1 = A$.

There is an independent family of 2^{κ} many subsets of κ .

Let $\{B_{\alpha} : \alpha < \mathfrak{c}\}$ be a decomposition of \mathbb{R} into disjoint Bernstein sets.

Let $\{N_{\xi} : \xi < 2^{\mathfrak{c}}\}$ be an independent family in \mathfrak{c} such that for every $\xi_1 < ... < \xi_n < 2^{\mathfrak{c}}$ and for any $\varepsilon_i \in \{0, 1\}$ the set $N_{\xi_1}^{\varepsilon_1} \cap ... \cap N_{\xi_n}^{\varepsilon_n}$ is nonempty and has cardinality \mathfrak{c} .

Independent family of sets

Let $\mathcal B$ be a family of subsets of a set X. We say that the family $\mathcal A$ is $\mathcal B$ -independent iff

$A_1^{\varepsilon_1} \cap \ldots \cap A_n^{\varepsilon_n} \in \mathcal{B}$

for any distinct $A_i \in A$, any $\varepsilon_i \in \{0, 1\}$ for $i \in \{1, ..., n\}$ and $n \in \mathbb{N}$ where $A^0 = X \setminus A$ and $A^1 = A$.

There is an independent family of 2^{κ} many subsets of κ .

Let $\{B_{\alpha} : \alpha < \mathfrak{c}\}$ be a decomposition of $\mathbb R$ into disjoint Bernstein sets.

Let $\{N_{\xi} : \xi < 2^{\mathfrak{c}}\}$ be an independent family in \mathfrak{c} such that for every $\xi_1 < ... < \xi_n < 2^{\mathfrak{c}}$ and for any $\varepsilon_i \in \{0, 1\}$ the set $N_{\xi_1}^{\varepsilon_1} \cap ... \cap N_{\xi_n}^{\varepsilon_n}$ is nonempty and has cardinality \mathfrak{c} .

Independent family of sets

Let $\mathcal B$ be a family of subsets of a set X. We say that the family $\mathcal A$ is $\mathcal B$ -independent iff

$$A_1^{\varepsilon_1} \cap \ldots \cap A_n^{\varepsilon_n} \in \mathcal{B}$$

for any distinct $A_i \in A$, any $\varepsilon_i \in \{0, 1\}$ for $i \in \{1, ..., n\}$ and $n \in \mathbb{N}$ where $A^0 = X \setminus A$ and $A^1 = A$.

There is an independent family of 2^κ many subsets of κ_{\cdot} .

Let $\{B_{\alpha} : \alpha < \mathfrak{c}\}$ be a decomposition of $\mathbb R$ into disjoint Bernstein sets.

Let $\{N_{\xi} : \xi < 2^{\mathfrak{c}}\}$ be an independent family in \mathfrak{c} such that for every $\xi_1 < ... < \xi_n < 2^{\mathfrak{c}}$ and for any $\varepsilon_i \in \{0, 1\}$ the set $N_{\xi_1}^{\varepsilon_1} \cap ... \cap N_{\xi_n}^{\varepsilon_n}$ is nonempty and has cardinality \mathfrak{c} .

Independent family of sets

Let $\mathcal B$ be a family of subsets of a set X. We say that the family $\mathcal A$ is $\mathcal B$ -independent iff

$$A_1^{\varepsilon_1} \cap ... \cap A_n^{\varepsilon_n} \in \mathcal{B}$$

for any distinct $A_i \in A$, any $\varepsilon_i \in \{0, 1\}$ for $i \in \{1, ..., n\}$ and $n \in \mathbb{N}$ where $A^0 = X \setminus A$ and $A^1 = A$.

There is an independent family of 2^{κ} many subsets of κ . Let $\{B_{\alpha} : \alpha < \mathfrak{c}\}$ be a decomposition of \mathbb{R} into disjoint Bernstein sets.

Let $\{N_{\xi} : \xi < 2^{\mathfrak{c}}\}$ be an independent family in \mathfrak{c} such that for every $\xi_1 < \ldots < \xi_n < 2^{\mathfrak{c}}$ and for any $\varepsilon_i \in \{0, 1\}$ the set $N_{\xi_1}^{\varepsilon_1} \cap \ldots \cap N_{\xi_n}^{\varepsilon_n}$ is nonempty and has cardinality \mathfrak{c} .

Independent family of Bernstein sets of cardinality 2^c

For $\xi < 2^{\mathfrak{c}}$ put

$$B^{\xi} = \bigcup_{\alpha \in N_{\xi}} B_{\alpha}.$$

Then every set B^{ξ} is Bernstein. Note that for every $\xi_1 < ... < \xi_n < 2^{\mathfrak{c}}$ and any $\varepsilon_i \in \{0, 1\}$ the set

$$(B^{\xi_1})^{\varepsilon_1} \cap ... \cap (B^{\xi_n})^{\varepsilon_n} = \bigcup_{\alpha \in N_{\xi_1}^{\varepsilon_1} \cap ... \cap N_{\xi_n}^{\varepsilon_n}} B_{\alpha}$$

is a Bernstein. That means $\{B^\xi:\xi<2^\mathfrak{c}\}$ is the independent family of Bernstein sets.

Let for $\alpha < \mathfrak{c}$, $g_{\alpha} : B_{\alpha} \to \mathbb{C}$ (or \mathbb{R}) be a non-zero function. Let us put

$$f_{\xi}(x) = \begin{cases} g_{\alpha}(x) \text{ ,when } x \in B_{\alpha} \text{ and } \alpha \in N_{\xi} \\ 0 \text{ otherwise.} \end{cases}$$

Then the family $\{f_{\xi}: \xi < 2^{\mathfrak{c}}\}$ is linearly independent.

- 4 同 6 4 日 6 4 日 6

-

Remark

Let *P* be any non-zero polynomial without constant term and consider the function $P(f_{\xi_1}, ..., f_{\xi_n})$. Let

$$P_{s}(x) = P(\varepsilon_{1} \cdot x, ..., \varepsilon_{n} \cdot x), s = (\varepsilon_{1}, ..., \varepsilon_{n})$$

Let us observe here that the function $P(f_{\xi_1}, ..., f_{\xi_n})|_{B_\alpha}$ for any $\alpha \in N_{\xi_1}^{\varepsilon_1} \cap ... \cap N_{\xi_n}^{\varepsilon_n}$ is of the form

$$P(\varepsilon_1 \cdot g_\alpha, ..., \varepsilon_n \cdot g_\alpha) = P_s(g_\alpha)$$

イロト イポト イヨト イヨト 二日

Remark

Then we have two possibilities.

(i) Either at least one of the functions P_s(x) for s ∈ {0,1}ⁿ is a non-zero polynomial of one variable. If P_s is non-zero, where s = (ε₁,...,ε_n), then the function P(f_{ξ1},...,f_{ξn}) is non-zero on the Bernstein set of the form

$$(B^{\xi_1})^{\varepsilon_1} \cap (B^{\xi_2})^{\varepsilon_2} \cap ... \cap (B^{\xi_n})^{\varepsilon_n}.$$

(ii) Or every function of a type $P_s(x)$ is a zero function, and then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function.

Span the algebra by the functions $\{f_{\xi} : \xi < 2^{\mathfrak{c}}\}$ and we get an algebra of $2^{\mathfrak{c}}$ many generators.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remark

Then we have two possibilities.

(i) Either at least one of the functions P_s(x) for s ∈ {0,1}ⁿ is a non-zero polynomial of one variable. If P_s is non-zero, where s = (ε₁,..., ε_n), then the function P(f_{ξ1},..., f_{ξn}) is non-zero on the Bernstein set of the form

$$(B^{\xi_1})^{\varepsilon_1} \cap (B^{\xi_2})^{\varepsilon_2} \cap ... \cap (B^{\xi_n})^{\varepsilon_n}.$$

(ii) Or every function of a type $P_s(x)$ is a zero function, and then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function.

Span the algebra by the functions $\{f_{\xi} : \xi < 2^{\mathfrak{c}}\}$ and we get an algebra of $2^{\mathfrak{c}}$ many generators.

イロト イポト イヨト イヨト

Remark

Then we have two possibilities.

(i) Either at least one of the functions P_s(x) for s ∈ {0,1}ⁿ is a non-zero polynomial of one variable. If P_s is non-zero, where s = (ε₁,..., ε_n), then the function P(f_{ξ1},..., f_{ξn}) is non-zero on the Bernstein set of the form

$$(B^{\xi_1})^{\varepsilon_1} \cap (B^{\xi_2})^{\varepsilon_2} \cap ... \cap (B^{\xi_n})^{\varepsilon_n}.$$

(ii) Or every function of a type $P_s(x)$ is a zero function, and then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function.

Span the algebra by the functions $\{f_{\xi}:\xi<2^{\mathfrak{c}}\}$ and we get an algebra of $2^{\mathfrak{c}}$ many generators.

< ロ > < 同 > < 回 > < 回 > < □ > <

Remark

Then we have two possibilities.

(i) Either at least one of the functions $P_s(x)$ for $s \in \{0,1\}^n$ is a non-zero polynomial of one variable. If P_s is non-zero, where $s = (\varepsilon_1, ..., \varepsilon_n)$, then the function $P(f_{\xi_1}, ..., f_{\xi_n})$ is non-zero on the Bernstein set of the form

$$(B^{\xi_1})^{\varepsilon_1} \cap (B^{\xi_2})^{\varepsilon_2} \cap ... \cap (B^{\xi_n})^{\varepsilon_n}.$$

(ii) Or every function of a type $P_s(x)$ is a zero function, and then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function.

Span the algebra by the functions $\{f_{\xi} : \xi < 2^{c}\}$ and we get an algebra of 2^{c} many generators.

(日)

\mathbb{K} is \mathbb{R} or \mathbb{C} . The function $f : \mathbb{K} \to \mathbb{K}$ is called:

- perfectly everywhere surjective (*PES*(K)) iff for every perfect set *P* ⊆ K, *f*(*P*) = K;
- strongly everywhere surjective (SES(K)) iff it takes every real or complex value c times on any interval.

The real function is an everywhere discontinuous Darboux function $(\mathcal{EDD}(\mathbb{R}))$ iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let $B \subseteq \mathbb{K}$ be a Bernstein set. There exist a function $f \in \mathcal{PES}(\mathbb{K})$ that is 0 on the set B^0 .

- perfectly everywhere surjective (*PES*(K)) iff for every perfect set *P* ⊆ K, *f*(*P*) = K;
- strongly everywhere surjective (SES(K)) iff it takes every real or complex value c times on any interval.

The real function is an everywhere discontinuous Darboux function $(\mathcal{EDD}(\mathbb{R}))$ iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let $B \subseteq \mathbb{K}$ be a Bernstein set. There exist a function $f \in \mathcal{PES}(\mathbb{K})$ that is 0 on the set B^0 .

- perfectly everywhere surjective (*PES*(K)) iff for every perfect set *P* ⊆ K, *f*(*P*) = K;
- strongly everywhere surjective (SES(K)) iff it takes every real or complex value c times on any interval.

The real function is an everywhere discontinuous Darboux function $(\mathcal{EDD}(\mathbb{R}))$ iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let $B \subseteq \mathbb{K}$ be a Bernstein set. There exist a function $f \in \mathcal{PES}(\mathbb{K})$ that is 0 on the set B^0 .

- perfectly everywhere surjective (*PES*(K)) iff for every perfect set *P* ⊆ K, *f*(*P*) = K;
- strongly everywhere surjective (SES(K)) iff it takes every real or complex value c times on any interval.

The real function is an everywhere discontinuous Darboux function $(\mathcal{EDD}(\mathbb{R}))$ iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let $B \subseteq \mathbb{K}$ be a Bernstein set. There exist a function $f \in \mathcal{PES}(\mathbb{K})$ that is 0 on the set B^0 .

イロト イポト イヨト イヨト

- perfectly everywhere surjective (*PES*(K)) iff for every perfect set *P* ⊆ K, *f*(*P*) = K;
- strongly everywhere surjective (SES(K)) iff it takes every real or complex value c times on any interval.

The real function is an everywhere discontinuous Darboux function $(\mathcal{EDD}(\mathbb{R}))$ iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let $B \subseteq \mathbb{K}$ be a Bernstein set. There exist a function $f \in \mathcal{PES}(\mathbb{K})$ that is 0 on the set B^0 .

・ロト ・同ト ・ヨト ・ヨト

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{ y_{\beta} : \beta < \mathfrak{c} \}.$

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{ y_{\beta} : \beta < \mathfrak{c} \}.$ Then for every $\alpha < \mathfrak{c}$ cardinality of $B_{\alpha} = P_{\alpha} \cap B$ is continuum.

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{ y_{\beta} : \beta < \mathfrak{c} \}.$ Then for every $\alpha < \mathfrak{c}$ cardinality of $B_{\alpha} = P_{\alpha} \cap B$ is continuum. Ennumerate a product $\{B_{\alpha} : \alpha < c\} \times \{y_{\beta} : \beta < c\}$ as $\{A_{\gamma} : \gamma < \mathfrak{c}\}, \text{ where } A_{\gamma} = (B_{\gamma}, y_{\gamma}).$

・ロト ・同ト ・ヨト ・ヨト

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{ y_{\beta} : \beta < \mathfrak{c} \}.$ Then for every $\alpha < \mathfrak{c}$ cardinality of $B_{\alpha} = P_{\alpha} \cap B$ is continuum. Ennumerate a product $\{B_{\alpha} : \alpha < c\} \times \{y_{\beta} : \beta < c\}$ as $\{A_{\gamma} : \gamma < \mathfrak{c}\}, \text{ where } A_{\gamma} = (B_{\gamma}, y_{\gamma}).$ Choose $x_0 \in B_0$ and put $f(x_0) = y_0$.

・ロト ・同ト ・ヨト ・ヨト

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{ y_{\beta} : \beta < \mathfrak{c} \}.$ Then for every $\alpha < \mathfrak{c}$ cardinality of $B_{\alpha} = P_{\alpha} \cap B$ is continuum. Ennumerate a product $\{B_{\alpha} : \alpha < c\} \times \{y_{\beta} : \beta < c\}$ as $\{A_{\gamma} : \gamma < \mathfrak{c}\}, \text{ where } A_{\gamma} = (B_{\gamma}, y_{\gamma}).$ Choose $x_0 \in B_0$ and put $f(x_0) = y_0$. Assume that for some $\zeta < \mathfrak{c}$ the points $\{x_{\eta} : \eta < \zeta\}$ were chosen satisfying $x_n \in B_n \setminus \{x_{\xi} : \xi < \mathfrak{c}\}$ for every $\eta < \zeta$ with $f(x_n) = y_n$ for every $\eta < \zeta$.

・ロト ・得ト ・ヨト ・ヨト

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K} = \{ y_{\beta} : \beta < \mathfrak{c} \}.$ Then for every $\alpha < \mathfrak{c}$ cardinality of $B_{\alpha} = P_{\alpha} \cap B$ is continuum. Ennumerate a product $\{B_{\alpha} : \alpha < c\} \times \{y_{\beta} : \beta < c\}$ as $\{A_{\gamma} : \gamma < \mathfrak{c}\}, \text{ where } A_{\gamma} = (B_{\gamma}, y_{\gamma}).$ Choose $x_0 \in B_0$ and put $f(x_0) = y_0$. Assume that for some $\zeta < \mathfrak{c}$ the points $\{x_n : \eta < \zeta\}$ were chosen satisfying $x_n \in B_n \setminus \{x_{\xi} : \xi < \mathfrak{c}\}$ for every $\eta < \zeta$ with $f(x_n) = y_n$ for every $\eta < \zeta$. Put $X = \{x_n : n < \zeta\}$ then $|X| < \mathfrak{c}$. So there exists a point $x_{\mathcal{C}} \in B_{\mathcal{C}} \setminus X$ and define $f(x_{\mathcal{C}}) = y_{\mathcal{C}}$. By putting f(x) = 0 for every $x \in \mathbb{K} \setminus \{x_{\varepsilon} : \xi < \mathfrak{c}\}$ we are done.

・ロト ・得ト ・ヨト ・ヨト

Theorem

```
The set \mathcal{PES}(\mathbb{C}) is 2<sup>c</sup>-algebrable.
```

Theorem

```
The set SES(\mathbb{C}) \setminus PES(\mathbb{C}) is 2<sup>c</sup>-algebrable.
```

Theorem

```
The set \mathcal{EDD}(\mathbb{R}) is 2<sup>c</sup>-algebrable.
```

Theorem

The set $\mathcal{PES}(\mathbb{C})$ is 2^c-algebrable.

Theorem

```
The set SES(\mathbb{C}) \setminus PES(\mathbb{C}) is 2<sup>c</sup>-algebrable.
```

Theorem

```
The set \mathcal{EDD}(\mathbb{R}) is 2<sup>c</sup>-algebrable.
```

Theorem

The set $\mathcal{PES}(\mathbb{C})$ is 2^c-algebrable.

Theorem

```
The set SES(\mathbb{C}) \setminus PES(\mathbb{C}) is 2<sup>c</sup>-algebrable.
```

Theorem

```
The set \mathcal{EDD}(\mathbb{R}) is 2^{\mathfrak{c}}-algebrable.
```

3

Theorem

The set $\mathcal{PES}(\mathbb{C})$ is 2^c-algebrable.

Theorem

```
The set SES(\mathbb{C}) \setminus PES(\mathbb{C}) is 2<sup>c</sup>-algebrable.
```

Theorem

The set $\mathcal{EDD}(\mathbb{R})$ is 2^c-algebrable.

(日) (同) (三) (三)

-

$\mathcal{EDF}(\mathbb{R})$ is the set of all nowhere continuous real functions with $|f(\mathbb{R})| < \omega$. $\mathcal{EDC}(\mathbb{R})$ is the set of all nowhere continuous compact-to-compact functions.

Theorem

The set $\mathcal{EDF}(\mathbb{R})$ is 2^c-algebrable but it is not strongly 1-algebrable.

Corollary

The set $\mathcal{EDC}(\mathbb{R})$ is 2^c-algebrable.

イロト イポト イヨト イヨト

 $\mathcal{EDF}(\mathbb{R})$ is the set of all nowhere continuous real functions with $|f(\mathbb{R})| < \omega$.

 $\mathcal{EDC}(\mathbb{R})$ is the set of all nowhere continuous compact-to-compact functions.

Theorem

The set $\mathcal{EDF}(\mathbb{R})$ is 2^c-algebrable but it is not strongly 1-algebrable.

Corollary

The set $\mathcal{EDC}(\mathbb{R})$ is 2^c-algebrable.

< ロ > < 同 > < 回 > < 回 > < □ > <

 $\mathcal{EDF}(\mathbb{R})$ is the set of all nowhere continuous real functions with $|f(\mathbb{R})| < \omega$.

 $\mathcal{EDC}(\mathbb{R})$ is the set of all nowhere continuous compact-to-compact functions.

Theorem

The set $\mathcal{EDF}(\mathbb{R})$ is 2^c-algebrable but it is not strongly 1-algebrable.

Corollary

The set $\mathcal{EDC}(\mathbb{R})$ is 2^c-algebrable.

(日) (同) (三) (三)

Let $C \subsetneq \mathbb{R}$ be a fixed closed subset of \mathbb{R} . We consider functions $f : \mathbb{R} \to \mathbb{R}$ that are continuous only in the points of C.

Theorem

The set of all functions $f : \mathbb{R} \to \mathbb{R}$ that are continuous only in the points of C is 2^c-algebrable.

(日) (同) (三) (三)

Let $C \subsetneq \mathbb{R}$ be a fixed closed subset of \mathbb{R} . We consider functions $f : \mathbb{R} \to \mathbb{R}$ that are continuous only in the points of C.

Theorem

The set of all functions $f : \mathbb{R} \to \mathbb{R}$ that are continuous only in the points of *C* is 2^c-algebrable.

・ 同 ト ・ ヨ ト ・ ヨ ト

proof (Sketch)

Let $[1,2] = \{r_{\alpha} : \alpha < \mathfrak{c}\}$ and $g : \mathbb{R} \to \mathbb{R}$ be such that g(x) = d(x, C). Then g is zero only on the set C. Put $g_{\alpha}(x) = r_{\alpha} \cdot g(x)$ and f_{ξ} as in the general method. If each function $P_s(x)$ is zero then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function. If $P_{s_0}(x)$ is non-zero for some $s_0 \in \{0,1\}^n$. Then $P(f_{\xi_1}, ..., f_{\xi_n})$ is continuous in any point of C and suppose that is continuous in a point $x_0 \notin C$.

- 4 同 6 4 日 6 4 日 6

proof (Sketch)

Let $[1,2] = \{r_{\alpha} : \alpha < \mathfrak{c}\}$ and $g : \mathbb{R} \to \mathbb{R}$ be such that g(x) = d(x, C). Then g is zero only on the set C. Put $g_{\alpha}(x) = r_{\alpha} \cdot g(x)$ and f_{ξ} as in the general method. If each function $P_s(x)$ is zero then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function. If $P_{s_0}(x)$ is non-zero for some $s_0 \in \{0, 1\}^n$. Then $P(f_{\xi_1}, ..., f_{\xi_n})$ is continuous in any point of C and suppose that is continuous in a point $x_0 \notin C$.

・ロト ・同ト ・ヨト ・ヨト

proof (Sketch)

Let $[1,2] = \{r_{\alpha} : \alpha < \mathfrak{c}\}$ and $g : \mathbb{R} \to \mathbb{R}$ be such that g(x) = d(x, C). Then g is zero only on the set C. Put $g_{\alpha}(x) = r_{\alpha} \cdot g(x)$ and f_{ξ} as in the general method. If each function $P_s(x)$ is zero then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function. If $P_{s_0}(x)$ is non-zero for some $s_0 \in \{0, 1\}^n$. Then $P(f_{\xi_1}, ..., f_{\xi_n})$ is continuous in any point of C and suppose that is continuous in a point $x_0 \notin C$.

イロト イポト イヨト イヨト 二日

proof (Sketch)

Let $[1,2] = \{r_{\alpha} : \alpha < \mathfrak{c}\}$ and $g : \mathbb{R} \to \mathbb{R}$ be such that g(x) = d(x, C). Then g is zero only on the set C. Put $g_{\alpha}(x) = r_{\alpha} \cdot g(x)$ and f_{ξ} as in the general method. If each function $P_s(x)$ is zero then $P(f_{\xi_1}, ..., f_{\xi_n})$ is zero function. If $P_{s_0}(x)$ is non-zero for some $s_0 \in \{0, 1\}^n$. Then $P(f_{\xi_1}, ..., f_{\xi_n})$ is continuous in any point of C and suppose that is continuous in a point $x_0 \notin C$.

イロト イポト イヨト イヨト 二日

proof continued

 $P(f_{\xi_1},...,f_{\xi_n})$ is zero on the Bernstein set

 $\bigcup_{\alpha\in N^0_{\xi_1}\cap N^0_{\xi_2}\cap\ldots\cap N^0_{\xi_n}}B_{\alpha}.$

For every $\beta \in N_{\xi_1}^{\varepsilon_1} \cap N_{\xi_2}^{\varepsilon_2} \cap ... \cap N_{\xi_n}^{\varepsilon_n}$ there exist a sequence $(x_n)_{n \in \mathbb{N}} \subseteq B_\beta$ such that $x_n \to x_0$. Hence by the continuity of polynomial of one variable we get that $P_{s_0}(g_\beta(x_0)) = 0$ for any such β . Since for $\alpha \neq \beta$ we have that $g_\alpha(x_0) = r_\alpha \cdot g(x_0) \neq r_\beta \cdot g(x_0) = g_\beta(x_0)$ so $P_{s_0}(g_\beta(x_0))$ as a polynomial of one variable β , that has infinitely many zeros, is zero.

function - contradiction.

< ロ > < 同 > < 回 > < 回 >

э

proof continued

 $P(f_{\xi_1},...,f_{\xi_n})$ is zero on the Bernstein set

 $\bigcup_{\alpha\in \mathsf{N}^0_{\xi_1}\cap\mathsf{N}^0_{\xi_2}\cap\ldots\cap\mathsf{N}^0_{\xi_n}}B_{\alpha}.$

For every $\beta \in N_{\xi_1}^{\varepsilon_1} \cap N_{\xi_2}^{\varepsilon_2} \cap ... \cap N_{\xi_n}^{\varepsilon_n}$ there exist a sequence $(x_n)_{n \in \mathbb{N}} \subseteq B_\beta$ such that $x_n \to x_0$. Hence by the continuity of polynomial of one variable we get that $P_{s_0}(g_\beta(x_0)) = 0$ for any such β .

Since for $\alpha \neq \beta$ we have that

 $g_{\alpha}(x_0) = r_{\alpha} \cdot g(x_0) \neq r_{\beta} \cdot g(x_0) = g_{\beta}(x_0)$ so $P_{s_0}(g_{\beta}(x_0))$ as a polynomial of one variable β , that has infinitely many zeros, is zero function - contradiction.

< ロ > < 同 > < 回 > < 回 >

proof continued

 $P(f_{\xi_1},...,f_{\xi_n})$ is zero on the Bernstein set

 $\bigcup_{\alpha\in \mathsf{N}^0_{\xi_1}\cap\mathsf{N}^0_{\xi_2}\cap\ldots\cap\mathsf{N}^0_{\xi_n}}B_{\alpha}.$

For every $\beta \in N_{\xi_1}^{\varepsilon_1} \cap N_{\xi_2}^{\varepsilon_2} \cap ... \cap N_{\xi_n}^{\varepsilon_n}$ there exist a sequence $(x_n)_{n \in \mathbb{N}} \subseteq B_\beta$ such that $x_n \to x_0$. Hence by the continuity of polynomial of one variable we get that $P_{s_0}(g_\beta(x_0)) = 0$ for any such β . Since for $\alpha \neq \beta$ we have that

 $g_{\alpha}(x_0) = r_{\alpha} \cdot g(x_0) \neq r_{\beta} \cdot g(x_0) = g_{\beta}(x_0)$ so $P_{s_0}(g_{\beta}(x_0))$ as a polynomial of one variable β , that has infinitely many zeros, is zero function - contradiction.

< ロ > < 同 > < 回 > < 回 >

Question 1

Is the set $\mathcal{PES}(\mathbb{C})$ strongly 2^c-algebrable? (answered 3 days ago)

Question 2

Is there a function $f \in \mathcal{EDC}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3

Is the set $\mathcal{EDC}(\mathbb{R})$ strongly 1-algebrable (strongly c-algebrable, strongly 2^c-algebrable)?

(日) (同) (三) (三)

Question 1

Is the set $\mathcal{PES}(\mathbb{C})$ strongly 2^c-algebrable? (answered 3 days ago)

Question 2

Is there a function $f \in \mathcal{EDC}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3

Is the set $\mathcal{EDC}(\mathbb{R})$ strongly 1-algebrable (strongly c-algebrable, strongly 2^c-algebrable)?

イロン 不同 とくほう イロン

Question 1

Is the set $\mathcal{PES}(\mathbb{C})$ strongly 2^c-algebrable? (answered 3 days ago)

Question 2

Is there a function $f \in \mathcal{EDC}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3

Is the set $\mathcal{EDC}(\mathbb{R})$ strongly 1-algebrable (strongly c-algebrable, strongly 2^c-algebrable)?

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question 1

Is the set $\mathcal{PES}(\mathbb{C})$ strongly 2^c-algebrable? (answered 3 days ago)

Question 2

Is there a function $f \in \mathcal{EDC}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3

Is the set $\mathcal{EDC}(\mathbb{R})$ strongly 1-algebrable (strongly c-algebrable, strongly 2^c-algebrable)?

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- R.M. Aron, J.A. Conejero, A. Peris, J.B. Seoane-Sepulveda, Uncountably generated algebras of everywhere surjective functions, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 1-5
- R.M. Aron, V.I. Gurariy, J.B. Seoane-Sepulveda, Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795-803
- R.M. Aron, J.B. Seoane-Sepulveda, Algebrability of the set of everywhere surjective functions on C, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25-31
- B. Balcar, F. Franěk, Independent families in complete Boolean algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 607-618

・ロト ・同ト ・ヨト ・ヨト

Thank you for your attention :)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э