Marek Bienias

Independent Bernstein sets and algebraic constructions

Joint with Artur Bartoszewicz and Szymon Głąb (Technical University of Lodz)

Introduction

Background

Recently it has become a trend in Mathematical Analysis to look for large algebraic structures (infinite dimensional vector spaces, closed infinite dimensional vector spaces, algebras) of functions on \mathbb{R} or \mathbb{C} that have certain properties.

Introduction

Background

Recently it has become a trend in Mathematical Analysis to look for large algebraic structures (infinite dimensional vector spaces, closed infinite dimensional vector spaces, algebras) of functions on \mathbb{R} or \mathbb{C} that have certain properties.

The notion of algebrability has its origin in works of Aron, Pérez-García and Seoane-Sepulveda and the following is a slightly simplified version of their definition.

Definition (Aron, Pérez-García and Seoane-Sepulveda)

Let \mathcal{L} be an algebra. A set $A \subseteq \mathcal{L}$ is said to be β-algebrable if there exists an algebra \mathcal{B} so that $\mathcal{B} \subseteq A \cup\{0\}$ and $\operatorname{card}(Z)=\beta$, where β is cardinal number and Z is a minimal system of generators of \mathcal{B}. Here, by $Z=\left\{z_{\alpha}: \alpha \in \Lambda\right\}$ is a minimal system of generators of \mathcal{B}, we mean that $\mathcal{B}=\mathcal{A}(Z)$ is the algebra generated by Z, and for every $\alpha_{0} \in \Lambda, z_{\alpha_{0}} \notin \mathcal{A}\left(Z \backslash\left\{z_{\alpha_{0}}\right\}\right)$. We also say that A is algebrable if A is β-algebrable for β-infinite.

The notion of algebrability has its origin in works of Aron, Pérez-García and Seoane-Sepulv́eda and the following is a slightly simplified version of their definition.

Definition (Aron, Pérez-García and Seoane-Sepulveda)

Let \mathcal{L} be an algebra. A set $A \subseteq \mathcal{L}$ is said to be β-algebrable if there exists an algebra \mathcal{B} so that $\mathcal{B} \subseteq A \cup\{0\}$ and $\operatorname{card}(Z)=\beta$, where β is cardinal number and Z is a minimal system of generators of \mathcal{B}. Here, by $Z=\left\{z_{\alpha}: \alpha \in \Lambda\right\}$ is a minimal system of generators of \mathcal{B}, we mean that $\mathcal{B}=\mathcal{A}(Z)$ is the algebra generated by Z, and for every $\alpha_{0} \in \Lambda, z_{\alpha_{0}} \notin \mathcal{A}\left(Z \backslash\left\{z_{\alpha_{0}}\right\}\right)$. We also say that A is algebrable if A is β-algebrable for β-infinite.

The notion of algebrability has its origin in works of Aron, Pérez-García and Seoane-Sepulv́eda and the following is a slightly simplified version of their definition.

Definition (Aron, Pérez-García and Seoane-Sepulv́eda)

Let \mathcal{L} be an algebra. A set $A \subseteq \mathcal{L}$ is said to be β-algebrable if there exists an algebra \mathcal{B} so that $\mathcal{B} \subseteq A \cup\{0\}$ and $\operatorname{card}(Z)=\beta$, where β is cardinal number and Z is a minimal system of generators of \mathcal{B}. Here, by $Z=\left\{z_{\alpha}: \alpha \in \Lambda\right\}$ is a minimal system of generators of \mathcal{B}, we mean that $\mathcal{B}=\mathcal{A}(Z)$ is the algebra generated by Z, and for every $\alpha_{0} \in \Lambda, z_{\alpha_{0}} \notin \mathcal{A}\left(Z \backslash\left\{z_{\alpha_{0}}\right\}\right)$. We also say that A is algebrable if A is β-algebrable for β-infinite.

We study the following classes of functions:

- Perfectly everywhere surjective $(\mathcal{P} \mathcal{S})$, strongly everywhere surjective $(\mathcal{S E S})$ and everywhere discontinuous Darboux $(\mathcal{E D D})$ functions;
- Everywhere discontinuous functions that have finitely many values $(\mathcal{E} \mathcal{D} \mathcal{F})$ and everywhere discontinuous compact to compact functions $(\mathcal{E D C})$;
- Functions that are continuous in fixed closed set C.

We study the following classes of functions:

- Perfectly everywhere surjective $(\mathcal{P E S})$, strongly everywhere surjective $(\mathcal{S E S})$ and everywhere discontinuous Darboux $(\mathcal{E D D})$ functions;
- Everywhere discontinuous functions that have finitely many values $(\mathcal{E} \mathcal{D} \mathcal{F})$ and everywhere discontinuous compact to compact functions ($\mathcal{E D C}$);
- Functions that are continuous in fixed closed set C.

We study the following classes of functions:

- Perfectly everywhere surjective $(\mathcal{P E S})$, strongly everywhere surjective $(\mathcal{S E S})$ and everywhere discontinuous Darboux $(\mathcal{E D D})$ functions;
- Everywhere discontinuous functions that have finitely many values $(\mathcal{E D F})$ and everywhere discontinuous compact to compact functions ($\mathcal{E D C}$);
- Functions that are continuous in fixed closed set C.

We study the following classes of functions:

- Perfectly everywhere surjective $(\mathcal{P E S})$, strongly everywhere surjective $(\mathcal{S E S})$ and everywhere discontinuous Darboux $(\mathcal{E D D})$ functions;
- Everywhere discontinuous functions that have finitely many values $(\mathcal{E D F})$ and everywhere discontinuous compact to compact functions ($\mathcal{E D C}$);
- Functions that are continuous in fixed closed set C.

Independent family of sets

Let \mathcal{B} be a family of subsets of a set X. We say that the family \mathcal{A} is \mathcal{B}-independent iff

for any distinct $A_{i} \in \mathcal{A}$, any $\varepsilon_{i} \in\{0,1\}$ for $i \in\{1, \ldots, n\}$ and $n \in \mathbb{N}$ where $A^{0}=X \backslash A$ and $A^{1}=A$.

> There is an independent family of 2^{κ} many subsets of κ. Let $\left\{B_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a decomposition of \mathbb{R} into disjoint Bernstein sets.
> Let $\left\{N_{\xi}: \xi<2^{c}\right\}$ be an independent family in c such that for every $\xi_{1}<\ldots<\xi_{n}<2^{\mathrm{c}}$ and for any $\varepsilon_{i} \in\{0,1\}$ the set $N_{\xi_{1}}^{\varepsilon_{1}} \cap \ldots \cap N_{\xi_{n}}^{\varepsilon_{n}}$ is nonempty and has cardinality c .

Independent family of sets

Let \mathcal{B} be a family of subsets of a set X. We say that the family \mathcal{A} is \mathcal{B}-independent iff

There is an independent family of 2^{κ} many subsets of κ. Let $\left\{B_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a decomposition of \mathbb{R} into disjoint Bernstein sets.
 $\xi_{1}<\ldots<\xi_{n}<2^{\text {c }}$ and for any $\varepsilon_{i} \in\{0,1\}$ the set $N_{\xi_{1}}^{\varepsilon_{1}} \cap \ldots \cap N_{\xi_{n}}^{\varepsilon_{n}}$ is nonempty and has cardinality \mathfrak{c}.

Independent family of sets

Let \mathcal{B} be a family of subsets of a set X. We say that the family \mathcal{A} is \mathcal{B}-independent iff

$$
A_{1}^{\varepsilon_{1}} \cap \ldots \cap A_{n}^{\varepsilon_{n}} \in \mathcal{B}
$$

for any distinct $A_{i} \in \mathcal{A}$, any $\varepsilon_{i} \in\{0,1\}$ for $i \in\{1, \ldots, n\}$ and $n \in \mathbb{N}$ where $A^{0}=X \backslash A$ and $A^{1}=A$.

> There is an independent family of 2^{κ} many subsets of κ. Let $\left\{B_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a decomposition of \mathbb{R} into disjoint Bernstein sets.
> Let $\left\{N_{\xi}: \xi<2^{c}\right\}$ be an independent family in c such that for every $\xi_{1}<\ldots<\xi_{n}<2^{\mathfrak{c}}$ and for any $\varepsilon_{i} \in\{0,1\}$ the set $N_{\xi_{1}}^{\varepsilon_{1}} \cap \ldots \cap N_{\xi_{n}}^{\varepsilon_{n}}$ is nonempty and has cardinality \mathfrak{c}.

Independent family of sets

Let \mathcal{B} be a family of subsets of a set X. We say that the family \mathcal{A} is \mathcal{B}-independent iff

$$
A_{1}^{\varepsilon_{1}} \cap \ldots \cap A_{n}^{\varepsilon_{n}} \in \mathcal{B}
$$

for any distinct $A_{i} \in \mathcal{A}$, any $\varepsilon_{i} \in\{0,1\}$ for $i \in\{1, \ldots, n\}$ and $n \in \mathbb{N}$ where $A^{0}=X \backslash A$ and $A^{1}=A$.

There is an independent family of 2^{κ} many subsets of κ. Let $\left\{B_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a decomposition of \mathbb{R} into disjoint Bernstein sets.
Let $\left\{N_{\xi}: \xi<2^{\mathfrak{c}}\right\}$ be an independent family in \mathfrak{c} such that for every $\xi_{1}<\ldots<\xi_{n}<2^{\mathfrak{c}}$ and for any $\varepsilon_{i} \in\{0,1\}$ the set $N_{\xi_{1}}^{\varepsilon_{1}} \cap \ldots \cap N_{\xi_{n}}^{\varepsilon_{n}}$ is nonempty and has cardinality \mathfrak{c}.

Independent family of Bernstein sets of cardinality $2^{\text {c }}$

For $\xi<2^{c}$ put

$$
B^{\xi}=\bigcup_{\alpha \in N_{\xi}} B_{\alpha}
$$

Then every set B^{ξ} is Bernstein. Note that for every $\xi_{1}<\ldots<\xi_{n}<2^{c}$ and any $\varepsilon_{i} \in\{0,1\}$ the set

$$
\left(B^{\xi_{1}}\right)^{\varepsilon_{1}} \cap \ldots \cap\left(B^{\xi_{n}}\right)^{\varepsilon_{n}}=\bigcup_{\alpha \in N_{\xi_{1}}^{\varepsilon_{1}} \cap \ldots \cap N_{\xi_{n}}^{\varepsilon_{n}}} B_{\alpha}
$$

is a Bernstein. That means $\left\{B^{\xi}: \xi<2^{c}\right\}$ is the independent family of Bernstein sets.

Let for $\alpha<\mathfrak{c}, g_{\alpha}: B_{\alpha} \rightarrow \mathbb{C}$ (or \mathbb{R}) be a non-zero function. Let us put

$$
f_{\xi}(x)=\left\{\begin{array}{l}
g_{\alpha}(x), \text { when } x \in B_{\alpha} \text { and } \alpha \in N_{\xi} \\
0 \text { otherwise } .
\end{array}\right.
$$

Then the family $\left\{f_{\xi}: \xi<2^{c}\right\}$ is linearly independent.

Remark

Let P be any non-zero polynomial without constant term and consider the function $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$. Let

$$
P_{s}(x)=P\left(\varepsilon_{1} \cdot x, \ldots, \varepsilon_{n} \cdot x\right), s=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)
$$

Let us observe here that the function $\left.P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)\right|_{B_{\alpha}}$ for any $\alpha \in N_{\xi_{1}}^{\varepsilon_{1}} \cap \ldots \cap N_{\xi_{n}}^{\varepsilon_{n}}$ is of the form

$$
P\left(\varepsilon_{1} \cdot g_{\alpha}, \ldots, \varepsilon_{n} \cdot g_{\alpha}\right)=P_{s}\left(g_{\alpha}\right)
$$

Remark

Then we have two possibilities.
(i) Either at least one of the functions $P_{s}(x)$ for $s \in\{0,1\}^{n}$ is a non-zero polynomial of one variable. If P_{S} is non-zero, where $s=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, then the function $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is non-zero on the Bernstein set of the form

(ii) Or every function of a type $P_{s}(x)$ is a zero function, and then $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is zero function.

Span the algebra by the functions $\left\{f_{\xi}: \xi<2^{c}\right\}$ and we get an algebra of $2^{\text {c }}$ many generators.

Remark

Then we have two possibilities.
(i) Either at least one of the functions $P_{s}(x)$ for $s \in\{0,1\}^{n}$ is a non-zero polynomial of one variable. If P_{s} is non-zero, where $s=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, then the function $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is non-zero on the Bernstein set of the form

$$
\left(B^{\xi_{1}}\right)^{\varepsilon_{1}} \cap\left(B^{\xi_{2}}\right)^{\varepsilon_{2}} \cap \ldots \cap\left(B^{\xi_{n}}\right)^{\varepsilon_{n}}
$$

(ii) Or every function of a type $P_{S}(x)$ is a zero function, and then $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is zero function.

Span the algebra by the functions $\left\{f_{\xi}: \xi<2^{c}\right\}$ and we get an algebra of 2^{c} many generators.

Remark

Then we have two possibilities.
(i) Either at least one of the functions $P_{s}(x)$ for $s \in\{0,1\}^{n}$ is a non-zero polynomial of one variable. If P_{s} is non-zero, where $s=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, then the function $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is non-zero on the Bernstein set of the form

$$
\left(B^{\xi_{1}}\right)^{\varepsilon_{1}} \cap\left(B^{\xi_{2}}\right)^{\varepsilon_{2}} \cap \ldots \cap\left(B^{\xi_{n}}\right)^{\varepsilon_{n}} .
$$

(ii) Or every function of a type $P_{S}(x)$ is a zero function, and then $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is zero function.

Span the algebra by the functions $\left\{f_{\xi}: \xi<2^{c}\right\}$ and we get an algebra of 2^{c} many generators.

Remark

Then we have two possibilities.
(i) Either at least one of the functions $P_{s}(x)$ for $s \in\{0,1\}^{n}$ is a non-zero polynomial of one variable. If P_{s} is non-zero, where $s=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, then the function $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is non-zero on the Bernstein set of the form

$$
\left(B^{\xi_{1}}\right)^{\varepsilon_{1}} \cap\left(B^{\xi_{2}}\right)^{\varepsilon_{2}} \cap \ldots \cap\left(B^{\xi_{n}}\right)^{\varepsilon_{n}}
$$

(ii) Or every function of a type $P_{S}(x)$ is a zero function, and then $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is zero function.

Span the algebra by the functions $\left\{f_{\xi}: \xi<2^{c}\right\}$ and we get an algebra of 2^{c} many generators.
\mathbb{K} is \mathbb{R} or \mathbb{C}. The function $f: \mathbb{K} \rightarrow \mathbb{K}$ is called:

- perfectly everywhere surjective $(\mathcal{P E S}(\mathbb{K}))$ iff for every perfect set $P \subseteq \mathbb{K}, f(P)=\mathbb{K}$;
- strongly everymhere suriective $(S \mathcal{S}(\mathbb{K})$) iff it takes every real or complex value c times on any interval.

The real function is an everywhere discontinuous Darboux function $(\mathcal{E D D}(\mathbb{R}))$ iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let $B \subseteq \mathbb{K}$ be a Bernstein set. There exist a function $f \in \mathcal{P} \mathcal{E}(\mathbb{K})$ that is 0 on the set B^{0}.
\mathbb{K} is \mathbb{R} or \mathbb{C}. The function $f: \mathbb{K} \rightarrow \mathbb{K}$ is called:

- perfectly everywhere surjective $(\mathcal{P E S}(\mathbb{K}))$ iff for every perfect set $P \subseteq \mathbb{K}, f(P)=\mathbb{K}$;
- strongly everywhere surjective $(\mathcal{S E S}(\mathbb{K}))$ iff it takes every real or complex value \mathfrak{c} times on any interval.

The real function is an everywhere discontinuous Darboux function $(\mathcal{E D D}(\mathbb{R}))$ iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let $B \subseteq \mathbb{K}$ be a Bernstein set. There exist a function $f \in \mathcal{P E S}(\mathbb{K})$ that is 0 on the set B^{0}.
\mathbb{K} is \mathbb{R} or \mathbb{C}. The function $f: \mathbb{K} \rightarrow \mathbb{K}$ is called:

- perfectly everywhere surjective $(\mathcal{P E S}(\mathbb{K}))$ iff for every perfect set $P \subseteq \mathbb{K}, f(P)=\mathbb{K}$;
- strongly everywhere surjective $(\mathcal{S E S}(\mathbb{K}))$ iff it takes every real or complex value \mathfrak{c} times on any interval.

The real function is an everywhere discontinuous Darboux function $(\mathcal{E D D}(\mathbb{R}))$ iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let $B \subseteq \mathbb{K}$ be a Bernstein set. There exist a function $f \in \mathcal{P E S}(\mathbb{K})$ that is 0 on the set B^{0}.
\mathbb{K} is \mathbb{R} or \mathbb{C}. The function $f: \mathbb{K} \rightarrow \mathbb{K}$ is called:

- perfectly everywhere surjective $(\mathcal{P E S}(\mathbb{K}))$ iff for every perfect set $P \subseteq \mathbb{K}, f(P)=\mathbb{K}$;
- strongly everywhere surjective $(\mathcal{S E S}(\mathbb{K}))$ iff it takes every real or complex value \mathfrak{c} times on any interval.

The real function is an everywhere discontinuous Darboux function $(\mathcal{E D D}(\mathbb{R}))$ iff it is nowhere continuous and maps connected sets to connected sets.

Proposition
Let $B \subseteq \mathbb{K}$ be a Bernstein set. There exist a function $f \in \mathcal{P E S}(\mathbb{K})$ that is 0 on the set B^{0}.
\mathbb{K} is \mathbb{R} or \mathbb{C}. The function $f: \mathbb{K} \rightarrow \mathbb{K}$ is called:

- perfectly everywhere surjective $(\mathcal{P E S}(\mathbb{K}))$ iff for every perfect set $P \subseteq \mathbb{K}, f(P)=\mathbb{K}$;
- strongly everywhere surjective $(\mathcal{S E S}(\mathbb{K}))$ iff it takes every real or complex value \mathfrak{c} times on any interval.

The real function is an everywhere discontinuous Darboux function $(\mathcal{E D D}(\mathbb{R}))$ iff it is nowhere continuous and maps connected sets to connected sets.

Proposition

Let $B \subseteq \mathbb{K}$ be a Bernstein set. There exist a function $f \in \mathcal{P E S}(\mathbb{K})$ that is 0 on the set B^{0}.

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K}=\left\{y_{\beta}: \beta<\mathfrak{c}\right\}$.

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K}=\left\{y_{\beta}: \beta<\mathfrak{c}\right\}$.
Then for every $\alpha<\mathfrak{c}$ cardinality of $B_{\alpha}=P_{\alpha} \cap B$ is continuum.

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K}=\left\{y_{\beta}: \beta<\mathfrak{c}\right\}$.
Then for every $\alpha<\mathfrak{c}$ cardinality of $B_{\alpha}=P_{\alpha} \cap B$ is continuum.
Ennumerate a product $\left\{B_{\alpha}: \alpha<c\right\} \times\left\{y_{\beta}: \beta<c\right\}$ as
$\left\{A_{\gamma}: \gamma<\mathfrak{c}\right\}$, where $A_{\gamma}=\left(B_{\gamma}, y_{\gamma}\right)$.
Choose $x_{0} \in B_{0}$ and put $f\left(x_{0}\right)=y_{0}$
Assume that for some $\zeta<c$ the points $\left\{x_{\eta}: \eta<\zeta\right\}$ were chosen satisfying $x_{\eta} \in B_{\eta} \backslash\left\{x_{\xi}: \xi<c\right\}$ for every $\eta<\zeta$ with $f\left(x_{\eta}\right)=y_{\eta}$ for every $\eta<\zeta$.

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K}=\left\{y_{\beta}: \beta<\mathfrak{c}\right\}$.
Then for every $\alpha<\mathfrak{c}$ cardinality of $B_{\alpha}=P_{\alpha} \cap B$ is continuum.
Ennumerate a product $\left\{B_{\alpha}: \alpha<c\right\} \times\left\{y_{\beta}: \beta<c\right\}$ as
$\left\{A_{\gamma}: \gamma<\mathfrak{c}\right\}$, where $A_{\gamma}=\left(B_{\gamma}, y_{\gamma}\right)$.
Choose $x_{0} \in B_{0}$ and put $f\left(x_{0}\right)=y_{0}$.

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K}=\left\{y_{\beta}: \beta<\mathfrak{c}\right\}$.
Then for every $\alpha<\mathfrak{c}$ cardinality of $B_{\alpha}=P_{\alpha} \cap B$ is continuum.
Ennumerate a product $\left\{B_{\alpha}: \alpha<c\right\} \times\left\{y_{\beta}: \beta<c\right\}$ as
$\left\{A_{\gamma}: \gamma<\mathfrak{c}\right\}$, where $A_{\gamma}=\left(B_{\gamma}, y_{\gamma}\right)$.
Choose $x_{0} \in B_{0}$ and put $f\left(x_{0}\right)=y_{0}$.
Assume that for some $\zeta<\mathfrak{c}$ the points $\left\{x_{\eta}: \eta<\zeta\right\}$ were chosen satisfying $x_{\eta} \in B_{\eta} \backslash\left\{x_{\xi}: \xi<\mathfrak{c}\right\}$ for every $\eta<\zeta$ with $f\left(x_{\eta}\right)=y_{\eta}$ for every $\eta<\zeta$.

proof (Sketch)

Let $B \subseteq \mathbb{K}$ be a Bernstein set and $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ an ennumeration of all perfect sets in \mathbb{K} and $\mathbb{K}=\left\{y_{\beta}: \beta<\mathfrak{c}\right\}$.
Then for every $\alpha<\mathfrak{c}$ cardinality of $B_{\alpha}=P_{\alpha} \cap B$ is continuum.
Ennumerate a product $\left\{B_{\alpha}: \alpha<c\right\} \times\left\{y_{\beta}: \beta<c\right\}$ as
$\left\{A_{\gamma}: \gamma<\mathfrak{c}\right\}$, where $A_{\gamma}=\left(B_{\gamma}, y_{\gamma}\right)$.
Choose $x_{0} \in B_{0}$ and put $f\left(x_{0}\right)=y_{0}$.
Assume that for some $\zeta<\mathfrak{c}$ the points $\left\{x_{\eta}: \eta<\zeta\right\}$ were chosen satisfying $x_{\eta} \in B_{\eta} \backslash\left\{x_{\xi}: \xi<\mathfrak{c}\right\}$ for every $\eta<\zeta$ with $f\left(x_{\eta}\right)=y_{\eta}$ for every $\eta<\zeta$.
Put $X=\left\{x_{\eta}: \eta<\zeta\right\}$ then $|X|<\mathfrak{c}$. So there exists a point $x_{\zeta} \in B_{\zeta} \backslash X$ and define $f\left(x_{\zeta}\right)=y_{\zeta}$. By putting $f(x)=0$ for every $x \in \mathbb{K} \backslash\left\{x_{\xi}: \xi<\mathfrak{c}\right\}$ we are done.

The following theorems hold and the proof is using a family of independent Berstein sets.

Theorem
The set $\mathcal{P E S}(\mathbb{C})$ is $2^{\text {c }}$-algebrable.

Theorem
The set $\mathcal{S E S}(\mathbb{C}) \backslash \mathcal{P E S}(\mathbb{C})$ is 2^{c}-algebrable.

Theorem
The set $\mathcal{E D} \mathcal{D}(\mathbb{R})$ is $2^{\text {c }}$-algebrable

The following theorems hold and the proof is using a family of independent Berstein sets.

Theorem

The set $\mathcal{P E S}(\mathbb{C})$ is $2^{\mathfrak{c}}$-algebrable.

Theorem
 The set $\mathcal{S E S}(\mathbb{C}) \backslash \mathcal{P E S}(\mathbb{C})$ is 2^{c}-algebrable.

Theorem
The set $\mathcal{E D} \mathcal{D}(\mathbb{R})$ is $2^{\text {c }}$-algebrable

The following theorems hold and the proof is using a family of independent Berstein sets.

Theorem

The set $\mathcal{P E S}(\mathbb{C})$ is $2^{\mathfrak{c}}$-algebrable.

Theorem

The set $\mathcal{S E S}(\mathbb{C}) \backslash \mathcal{P E S}(\mathbb{C})$ is $2^{\text {c }}$-algebrable.

Theorem
The set $\mathcal{E D D}(\mathbb{R})$ is $2^{\text {c }}$-algebrable.

The following theorems hold and the proof is using a family of independent Berstein sets.

Theorem

The set $\mathcal{P E S}(\mathbb{C})$ is 2^{c}-algebrable.

Theorem

The set $\mathcal{S E S}(\mathbb{C}) \backslash \mathcal{P E S}(\mathbb{C})$ is $2^{\mathfrak{c}}$-algebrable.

Theorem

The set $\mathcal{E D D}(\mathbb{R})$ is $2^{\text {c }}$-algebrable.
$\mathcal{E} \mathcal{D} \mathcal{F}(\mathbb{R})$ is the set of all nowhere continuous real functions with $|f(\mathbb{R})|<\omega$.
$\mathcal{E D C}(\mathbb{R})$ is the set of all nowhere continuous compact-to-compact functions.

Theorem
The set $\mathcal{E D \mathcal { F }}(\mathbb{R})$ is $2^{\text {c }}$-algebrable but it is not strongly 1 -algebrable

Corollary
The set $\mathcal{E D C}(\mathbb{R})$ is $2^{\text {c }}$-algebrable.
$\mathcal{E D} \mathcal{F}(\mathbb{R})$ is the set of all nowhere continuous real functions with $|f(\mathbb{R})|<\omega$.
$\mathcal{E D C}(\mathbb{R})$ is the set of all nowhere continuous compact-to-compact functions.

Theorem

The set $\mathcal{E D} \mathcal{F}(\mathbb{R})$ is $2^{\mathfrak{c}}$-algebrable but it is not strongly 1-algebrable.

Corollary
The set $\mathcal{E D C}(\mathbb{R})$ is $2^{\text {c }}$-algebrable.
$\mathcal{E} \mathcal{D} \mathcal{F}(\mathbb{R})$ is the set of all nowhere continuous real functions with $|f(\mathbb{R})|<\omega$.
$\mathcal{E D C}(\mathbb{R})$ is the set of all nowhere continuous compact-to-compact functions.

Theorem

The set $\mathcal{E D} \mathcal{F}(\mathbb{R})$ is $2^{\mathfrak{c}}$-algebrable but it is not strongly 1 -algebrable.

Corollary

The set $\mathcal{E D C}(\mathbb{R})$ is $2^{\mathfrak{c}}$-algebrable.

Let $C \subsetneq \mathbb{R}$ be a fixed closed subset of \mathbb{R}. We consider functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that are continuous only in the points of C.

Theorem
 The set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that are continuous only in the points of C is 2^{c}-algebrable.

Let $C \subsetneq \mathbb{R}$ be a fixed closed subset of \mathbb{R}. We consider functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that are continuous only in the points of C.

Theorem

The set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that are continuous only in the points of C is 2^{c}-algebrable.

proof (Sketch)

Let $[1,2]=\left\{r_{\alpha}: \alpha<\mathfrak{c}\right\}$ and
$g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $g(x)=d(x, C)$. Then g is zero only on the set C.
Put $g_{\alpha}(x)=r_{\alpha} \cdot g(x)$ and f_{ξ} as in the general method.
If each function $P_{s}(x)$ is zero then $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is zero function. If $P_{s_{0}}(x)$ is non-zero for some $s_{0} \in\{0,1\}^{n}$. Then $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is continuous in any point of C and suppose that is continuous in a point $x_{0} \notin C$.

proof (Sketch)

Let $[1,2]=\left\{r_{\alpha}: \alpha<\mathfrak{c}\right\}$ and
$g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $g(x)=d(x, C)$. Then g is zero only on the set C.
Put $g_{\alpha}(x)=r_{\alpha} \cdot g(x)$ and f_{ξ} as in the general method.
If each function $P_{s}(x)$ is zero then $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is zero function.
If $P_{s_{0}}(x)$ is non-zero for some $s_{0} \in\{0,1\}^{n}$. Then $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is continuous in any point of C and suppose that is continuous in a point $x_{0} \notin C$.

proof (Sketch)

Let $[1,2]=\left\{r_{\alpha}: \alpha<\mathfrak{c}\right\}$ and
$g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $g(x)=d(x, C)$. Then g is zero only on the set C.
Put $g_{\alpha}(x)=r_{\alpha} \cdot g(x)$ and f_{ξ} as in the general method.
If each function $P_{s}(x)$ is zero then $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is zero function.
If $P_{s_{0}}(x)$ is non-zero for some $s_{0} \in\{0,1\}^{n}$. Then $P\left(f_{\varepsilon}, \ldots, f_{\varepsilon}\right)$ is
continuous in any point of C and suppose that is continuous in a point $x_{0} \notin C$.

proof (Sketch)

Let $[1,2]=\left\{r_{\alpha}: \alpha<\mathfrak{c}\right\}$ and
$g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $g(x)=d(x, C)$. Then g is zero only on the set C.
Put $g_{\alpha}(x)=r_{\alpha} \cdot g(x)$ and f_{ξ} as in the general method.
If each function $P_{s}(x)$ is zero then $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is zero function. If $P_{s_{0}}(x)$ is non-zero for some $s_{0} \in\{0,1\}^{n}$. Then $P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is continuous in any point of C and suppose that is continuous in a point $x_{0} \notin C$.

proof continued

$P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is zero on the Bernstein set

$$
\bigcup_{\alpha \in N_{\xi_{1}}^{0} \cap N_{\xi_{2}}^{0} \cap \ldots \cap N_{\xi_{n}}^{0}} B_{\alpha} .
$$

For every $\beta \in N_{\xi_{1}}^{\varepsilon_{1}} \cap N_{\xi_{2}}^{\varepsilon_{2}} \cap \ldots \cap N_{\xi_{n}}^{\varepsilon_{n}}$ there exist a sequence
$\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq B_{\beta}$ such that $x_{n} \rightarrow x_{0}$. Hence by the continuity of
polynomial of one variable we get that $P_{s_{0}}\left(g_{\beta}\left(x_{0}\right)\right)=0$ for any
such β.
Since for $\alpha \neq \beta$ we have that
$g_{\alpha}\left(x_{0}\right)=r_{\alpha} \cdot g\left(x_{0}\right) \neq r_{\beta} \cdot g\left(x_{0}\right)=g_{\beta}\left(x_{0}\right)$ so $P_{s_{0}}\left(g_{\beta}\left(x_{0}\right)\right)$ as a polynomial of one variable β, that has infinitely many zeros, is zero function - contradiction.

proof continued

$P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is zero on the Bernstein set

$$
\bigcup_{\alpha \in N_{\xi_{1}}^{0} \cap N_{\xi_{2}}^{0} \cap \ldots \cap N_{\xi_{n}}^{0}} B_{\alpha} .
$$

For every $\beta \in N_{\xi_{1}}^{\varepsilon_{1}} \cap N_{\xi_{2}}^{\varepsilon_{2}} \cap \ldots \cap N_{\xi_{n}}^{\varepsilon_{n}}$ there exist a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq B_{\beta}$ such that $x_{n} \rightarrow x_{0}$. Hence by the continuity of polynomial of one variable we get that $P_{s_{0}}\left(g_{\beta}\left(x_{0}\right)\right)=0$ for any such β.
Since for $\alpha \neq \beta$ we have that
$g_{\alpha}\left(x_{0}\right)=r_{\alpha} \cdot g\left(x_{0}\right) \neq r_{\beta} \cdot g\left(x_{0}\right)=g_{\beta}\left(x_{0}\right)$ so $P_{s_{0}}\left(g_{\beta}\left(x_{0}\right)\right)$ as a
polynomial of one variable β, that has infinitely many zeros, is zero function - contradiction

proof continued

$P\left(f_{\xi_{1}}, \ldots, f_{\xi_{n}}\right)$ is zero on the Bernstein set

$$
\bigcup_{\alpha \in N_{\xi_{1}}^{0} \cap N_{\xi_{2}}^{0} \cap \ldots \cap N_{\xi_{n}}^{0}} B_{\alpha} .
$$

For every $\beta \in N_{\xi_{1}}^{\varepsilon_{1}} \cap N_{\xi_{2}}^{\varepsilon_{2}} \cap \ldots \cap N_{\xi_{n}}^{\varepsilon_{n}}$ there exist a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq B_{\beta}$ such that $x_{n} \rightarrow x_{0}$. Hence by the continuity of polynomial of one variable we get that $P_{s_{0}}\left(g_{\beta}\left(x_{0}\right)\right)=0$ for any such β.
Since for $\alpha \neq \beta$ we have that
$g_{\alpha}\left(x_{0}\right)=r_{\alpha} \cdot g\left(x_{0}\right) \neq r_{\beta} \cdot g\left(x_{0}\right)=g_{\beta}\left(x_{0}\right)$ so $P_{s_{0}}\left(g_{\beta}\left(x_{0}\right)\right)$ as a polynomial of one variable β, that has infinitely many zeros, is zero function - contradiction.

Question 1

Is the set $\mathcal{P E S}(\mathbb{C})$ strongly $2^{\text {c }}$-algebrable? (answered 3 days ago)

Question 2

Is there a function $f \in \mathcal{E} \mathcal{D C}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3

Is the set $\mathcal{E D C}(\mathbb{R})$ strongly 1 -algebrable (strongly c-algebrable, strongly $2^{\text {c }}$-algebrable)?

Question 1

Is the set $\mathcal{P E S}(\mathbb{C})$ strongly $2^{\text {c }}$-algebrable? (answered 3 days ago)

Question 2

Is there a function $f \in \mathcal{E D C}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3
Is the set $\mathcal{E D C}(\mathbb{R})$ strongly 1 -algebrable (strongly c-algebrable, strongly $2^{\text {c }}$-algebrable)?

Question 1

Is the set $\mathcal{P E S}(\mathbb{C})$ strongly $2^{\text {c }}$-algebrable? (answered 3 days ago)

Question 2

Is there a function $f \in \mathcal{E D C}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3

Is the set $\mathcal{E D C}(\mathbb{R})$ strongly 1 -algebrable (strongly \mathfrak{c}-algebrable, strongly $2^{\text {c }}$-algebrable)?

Question 1

Is the set $\mathcal{P E S}(\mathbb{C})$ strongly $2^{\text {c }}$-algebrable? (answered 3 days ago)

Question 2

Is there a function $f \in \mathcal{E D C}(\mathbb{R})$ that has infinitely many values on each interval?

Question 3

Is the set $\mathcal{E D C}(\mathbb{R})$ strongly 1 -algebrable (strongly \mathfrak{c}-algebrable, strongly $2^{\text {c }}$-algebrable)?
(R.M. Aron, J.A. Conejero, A. Peris, J.B. Seoane-Sepulv́eda, Uncountably generated algebras of everywhere surjective functions, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 1-5
R.M. Aron, V.I. Gurariy, J.B. Seoane-Sepulv́eda, Lineability and spaceability of sets of functions on \mathbb{R}, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795-803

R R.M. Aron, J.B. Seoane-Sepulv́eda, Algebrability of the set of everywhere surjective functions on \mathbb{C}, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25-31

囯 B. Balcar, F. Franěk, Independent families in complete Boolean algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 607-618

Thank you for your attention :)

